

Problem

How to guide generative models to generate biomechanically accurate human motion?

Our Results

We propose a novel framework, BIGE, that combines bio-mechanically meaningful scoring metrics with generative modeling. To achieve this, we:

- develop and validate crucial physiological scoring metrics for injury avoidance and rehabilitation. Our scores incorporate observable and hidden biomechanical constraints, ensuring the clinical relevance of generated motions.
- integrate a differentiable surrogate model for muscle activation to reverse optimize the latent space of the generative model:
- enable the retrieval of physiologically valid motions through targeted search;
- demonstrates superior performance in generating diverse, physically plausible motions while maintaining high fidelity to clinician-defined objectives compared to existing approaches.
- We open source the code for simulation, data, and models at: Code: https://github.com/Rose-STL-Lab/BIGE

Score-Guided Generative Model

BIGE leverages score-guided optimization to refine latent representations in generative models, enforcing biomechanical constraints to produce high-quality human motion sequences.

Biomechanical Constraints

Our framework allows clinicians to impose multiple biomechanical constraints and criteria on the generated motion, ensuring adherence to physiologically meaningful properties. These constraints can target various aspects of the motion, including joint kinematics, joint center dynamics, and muscle activations.

Metric	Definition	Guidance Loss
Pelvis Tilt (degs)	$\max(K_{\text{pelvis}})$, where K_{pelvis} is the pelvis tilt angle at peak activation	$\mathcal{L}_{\text{tilt}} = \frac{1}{T} \sum_{t=1}^{T} \hat{K}_{t,\text{period}}$
Asymmetry (degs)	$\max(\sum_{(j_l, j_r) \in \text{leg joints}} K_{j,\text{left}} - K_{j,\text{right}}),$	$\mathcal{L}_{asymm} = \frac{1}{T} \sum_{t=1}^{T} \sum_{t=$
	comparing the angles of left and right leg joints	
Angular vel. $(degs/s)$	$\operatorname{mean}(\sum_{\theta \in K^{\operatorname{angles}}} \frac{\mathrm{d}\theta}{\mathrm{d}t})$, where K^{angle} is joint angles in Kinematics	$\mathcal{L}_{\omega} = \frac{1}{T} \sum_{t=1}^{T} \sum_{\theta \in I}^{T}$
COM vel. (m/s)	$\max(\frac{ \mathbf{d}K^{trans} }{\mathbf{d}t})$, where $K^{trans} \in \mathbb{R}^3$	$\left \mathcal{L}_{v_{\text{COM}}} = \frac{1}{T-1} \sum_{t=1}^{T-1} \right $
	pelvis translation relative to the ground	
COM acc. (m/s^2)	$\max(\frac{ \mathrm{d}^2 K^{trans} }{\mathrm{d}t^2})$, where ∇^2 is the Laplacian operator	$\mathcal{L}_{a_{\text{COM}}} = \frac{1}{T-2} \sum_{t=2}^{T-1} \mathcal{L}_{t=2}^{T-1}$
Foot Sliding	$\max(\frac{\mathrm{d}p_{\mathrm{lowest}}}{\mathrm{d}t})$, ensures the lowest point p_{lowest}	$\mathcal{L}_{\text{slide}} = \frac{1}{T-1} \sum_{t=1}^{T-1} ($
	does not slide on the ground	
Muscle activation	Ensure vastus medialis muscle activation $\hat{A}_{\text{vas}_\text{med}}$	$\mathcal{L}_{\text{MAC}} = \frac{1}{T} \sum_{t=1}^{T} \max$
constrain (MAC)	remains in the given range [low,high]	

Table: Summary of loss constraints. The final objective is formulated as a weighted sum of the individual constraints.

BIGE: Biomechanics-informed GenAl for Exercise Science

Shubh Maheshwari *, Anwesh Mohanty*, Yadi Cao*, Swithin Razu[†], Andrew D. McCulloch[†], Rose Yu^{*}

* Rose Spatio-Temporal Lab Department of Computer Science

[†] Cardiac Mechanics Research Group Department of Bioengineering University of California San Diego, San Diego, CA shmaheshwari@ucsd.edu,roseyu@ucsd.edu

Score calculation

Latent variables (sampled randomly) are decoded using the VQ-VAE decoder to generate joint kinematics. Next, hierarchical transformations are applied to the biomechanical model, to compute joint centers and a surrogate model to predict muscle activations. Finally, clinician-defined constraints are imposed on the derived variables.

Qualitative Comparison

Comparison of squat motion sequences generated by MDM [1] and BIGE against reference data from OpenCap [2]. The yellow trajectory traces hip joint movement throughout the complete squat cycle. BIGE produces biomechanically accurate squats that closely match the reference, while MDM exhibits unrealistic pelvic tilt (highlighted in red), resulting in less natural movement.

Acknowledgments

We extend our gratitude to The Wu Tsai Human Performance Alliance for their invaluable support and resources. Their dedication to advancing human performance through interdisciplinary research has been instrumental to our project.

eak_timestep,pelvis_tilt_index $\sum_{j_l, j_r \in \text{leg joints}} (\hat{K}_{\text{left}} - \hat{K}_{\text{right}})^2$

 $_{K^{\mathrm{angles}}}(\hat{K}_{t,\theta}-\hat{K}_{t,\theta})^2$ $(\hat{K}_{t+1}^{trans} - \hat{K}_t^{trans})^2$ is the

 $\sum_{n=1}^{1} (\nabla^2 \hat{K}^{trans})^2$ $(\mathbf{p}_{\text{lowest},t+1} - \mathbf{p}_{\text{lowest},t})^2$

ax(x - high, low - x, 0)

Model	$ \text{Pelvis tilt}(\text{degs}) \rightarrow $	${\rm Asymmetry(degs)} \rightarrow$	$\omega~(\rm degs/s) \rightarrow$	COM vel.(m/s) \rightarrow	COM acc. $(m/s^2) \rightarrow$	Constrain $(0-1)\downarrow$
Reference	-23.40	2.42	90.04	0.54	2.65	0.08
MoCap [2]	$-28.13^{\pm 6.03}$	$2.76^{\pm 0.59}$	$96.24^{\pm 13.96}$	$0.67^{\pm 0.14}$	$30.45^{\pm 5.55}$	$0.03^{\pm 0.03}$
MDM [1]	$0.42^{\pm 1.87}$	$2.25^{\pm0.28}$	$554.10^{\pm 112.77}$	$3.39^{\pm 0.79}$	$335.86^{\pm 81.37}$	$0.03^{\pm 0.02}$
T2M-GPT $[4]$	$4.16^{\pm 2.42}$	$4.73^{\pm 0.29}$	$918.14^{\pm 42.06}$	$6.09^{\pm 0.48}$	$597.95^{\pm 54.60}$	$0.02^{\pm0.01}$
VQVAE [3]	$-20.69^{\pm 0.51}$	$1.12^{\pm 0.03}$	$37.78^{\pm 0.42}$	$1.59^{\pm 0.08}$	$128.24^{\pm 6.49}$	$0.16^{\pm 0.01}$
BIGE	$-23.09^{\pm1.54}$	$2.09^{\pm 0.14}$	$56.95^{\pm 1.94}$	$0.51^{\pm0.04}$	$27.32^{\pm 3.88}$	$0.06^{\pm 0.01}$

Table: Performance evaluation on guidance metrics. The right arrow (\rightarrow) indicates that the values should be close to the Reference data. Down arrow (\downarrow) means a value closer to 0 is better. BIGE effectively adheres to clinician-accepted constraints, highlighting its efficacy in producing physiologically meaningful motion

Our guidance strategy leads to a more physiologically accurate squat motion as evidenced by the increased depth of the squat as muscle activation increases. The samples are ordered by the peak muscle activation. The red and green lines at 50% squat cycle represent the depth of the squat.

- 2022.
- smartphone videos. 07 2022.

Quantitative Comparison

Muscle activation guidance

References

[1] G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-Or, and A. H. Bermano. Human motion diffusion model. arXiv preprint arXiv:2209.14916,

[2] S. Uhlrich, A. Falisse, Kidziński, J. Muccini, M. Ko, A. Chaudhari, J. Hicks, and S. Delp. Opencap: 3d human movement dynamics from

[3] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learning. In *Proceedings of the 31st International Conference* on Neural Information Processing Systems, NIPS'17, page 6309–6318, Red Hook, NY, USA, 2017. Curran Associates Inc. [4] J. Zhang, Y. Zhang, X. Cun, S. Huang, Y. Zhang, H. Zhao, H. Lu, and X. Shen. T2m-gpt: Generating human motion from textual descriptions with discrete representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Wu Tsai Human Performance Alliance UC San Diego