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Figure 1: BIGE is a framework for generative models to adhere to clinician-defined constraints. To generate
realistic motion, our method uses a biomechanically informed surrogate model to guide the generation
process. Please refer to the project website: https://rose-stl-lab.github.io/UCSD-OpenCap-
Fitness-Dataset/ for additional details.

Abstract
Proper movements enhance mobility, coordination, and muscle activation, which are crucial for
performance, injury prevention, and overall fitness. However, traditional simulation tools rely
on strong modeling assumptions, are difficult to set up and computationally expensive. On the
other hand, generative AI approaches provide efficient alternatives to motion generation. But they
often lack physiological relevance and do not incorporate biomechanical constraints, limiting their
practical applications in sports and exercise science. To address these limitations, we propose a novel
framework, BIGE, that combines bio-mechanically meaningful scoring metrics with generative mod-
eling. BIGE integrates a differentiable surrogate model for muscle activation to reverse optimize the
latent space of the generative model, enabling the retrieval of physiologically valid motions through
targeted search. Through extensive experiments on squat exercise data, our framework demonstrates
superior performance in generating diverse, physically plausible motions while maintaining high
fidelity to clinician-defined objectives compared to existing approaches.

1. Introduction

Digital recovery and rehabilitation have become increasingly crucial in modern sports and exercise
science. Healthcare professionals and researchers have explored various digital tools to simulate
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physiologically proper motions that can guide practical training and rehabilitation processes. Physics-
based simulations Keller et al. (2023); Lai et al. (2017); Rajagopal et al. (2016) have traditionally
served as the primary tool to generate physiologically feasible motions by incorporating biome-
chanical constraints and principles. While these approaches ensure physical validity through proper
integration of biomechanical models, they face significant limitations: the strong assumptions in
biomechanical models can introduce bias in outputs, making them fail to capture the complexity in
real-world data. Furthermore, they require substantial domain expertise to set up and tune, and the
intense computational complexity makes them impractical for real-time clinical applications, such as
generating guidance motions for patients on-the-fly.

Generative AI models have emerged as a promising alternative to traditional human motion
simulation due to their ability to represent complex, real-world data. Advances in GenAI have
enabled remarkable progress in human motion synthesis Zhang et al. (2023b,a); Tevet et al. (2022).
However, these methods face limitations in clinical and rehabilitation settings. Naive generative
models lack precise control over generated motions, while conditional models fail to guarantee
physiological feasibility due to 1) the absence of meaningful biomechanical constraints in their
conditioning and 2) reliance on motion representations, like SMPL Loper et al. (2015), that are not
biomechanically grounded.

Motivated by these challenges, we propose a novel framework that guides the generative model
with biomechanics metrics to generate physiologically meaningful human motions. Our framework
builds on the idea of latent inceptionism Mordvintsev et al. (2015); Eckmann et al. (2022), which
demonstrated score-guided generation in latent space for non-temporal tasks. We extend this concept
to generate human motions that meet both observable biomechanical criteria, such as joint kinematics,
and hidden criteria, such as muscle activations. By addressing both aspects, our approach ensures
that generated motions minimize injury risk, making them suitable for rehabilitation and training.

Our methodology consists of three key components: 1) a generative model based on Vector-
Quantized Variational Autoencoder (VQVAE) for learning diverse motion representations 2) a
surrogate model to overcome the non-differentiable nature of inverse dynamics calculations for
muscle activations and 3) a guidance policy that optimizes latent vectors based on physiologically
meaningful objective scores. This combination enables our framework to generate high-fidelity,
clinically relevant motions tailored to specific exercise goals.

Our main contributions are summarized below:

• We present a novel framework that combines human motion generative modeling with score-
guided retrieval, capable of generating high-fidelity motions while accounting for biomechani-
cal criteria, such as injury risk and personalized skeletal variations.

• We develop and validate crucial physiological scoring metrics for injury avoidance and re-
habilitation. Our scores incorporate both observable and hidden biomechanical constraints,
ensuring the clinical relevance of generated motions.

• Through extensive experiments, we demonstrate the superiority of our approach in generating
squat motions that better satisfy the aforementioned objectives compared to existing state-of-
the-art generative models.
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2. Related Works

Biomechanical Simulations Traditional biomechanical simulations build upon foundational biome-
chanical modeling (such as Hill muscle model Hill (1938)) using musculotendon dynamics by Zajac
(1989),. Several mature frameworks have emerged: OpenSim Seth et al. (2018); Delp et al. (2007),
Moco Dembia et al. (2021) De Groote et al. (2016), a specialized model for upper body simula-
tion Lee et al. (2009), OpenCap Uhlrich et al. (2022) for computing motions that best complement
video input, and Nimble Werling et al. (2021) for differentiable simulation.

Human Motion Generation Machine learning has emerged as an alternative to traditional sim-
ulations. In particular, generative models for human motion synthesis Maheshwari et al. (2022);
Gupta et al. (2023); Guo et al. (2020); Petrovich et al. (2021); Tevet et al. (2022). Recent works have
explored approaches to control the motion generation process using text Zhang et al. (2023a); Tevet
et al. (2022); Kalakonda et al. (2022). Although these methods have significantly improved motion
synthesis quality, they generate physiologically unexplainable motions because their representation
(SMPL Loper et al. (2015) and its variants Guo et al. (2022)) inherently lacks biomechanical under-
standing. However, none of these works incorporate biomechanically meaningful constraints, which
could be beneficial for clinical applications such as rehabilitation.

Score-Guided Retrieval Generation Although not in the field of human motion generation,
LIMO Eckmann et al. (2022) shows great promise in retrieving generated targets that satisfy certain
objective constraints. Although LIMO demonstrated success in molecular properties, this scenario
contains only static generation (compound formulation) and constraints (chemical properties). It
has not been studied or validated in scenarios involving highly dynamic systems, such as human
motion. Motivated by LIMO, we adopt a similar approach and design several crucial criteria scores
for injury avoidance and rehabilitation. To our knowledge, the only similar work is Yao et al. (2022).
However, this work only considers a hidden criterion: muscle activation. In contrast, our diverse
scoring criteria cover both observable and hidden states.

3. Methodology

Figure 1 provides a high-level overview of BIGE, our biomechanic-informed generative model.
BIGE performs score-guided optimization to refine the latent space representations of the generative
model subject to biomechanical constraints to generate high-quality motion samples. Section 3.1
details our score-guided generative model, which leverages property-based objectives to refine
motion generation. Section 3.2 introduces the surrogate model, which incorporates biomechanical
data to predict physiologically relevant features such as muscle activations. Finally, we discuss
how biomechanical knowledge is used to model properties and guide the generative process toward
producing clinically meaningful exercise motions.

3.1. Score-Guided Generative Model

Our score-guided generative model combines property-based guidance to optimize latent space
representations to generate motion sequences. The motion sequence represents physiologically
meaningful joint kinematics K ∈ RT×D, where T is the number of time steps and D is the degree of
freedom of the biomechanical mode.
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Training: We train a VQVAE van den Oord et al. (2017) to learn a compact latent representation
of the joint kinematics. The VQVAE consists of an encoder fenc, a decoder fdec, and a discrete
codebook C = {ci}Ni=1 where each ci ∈ Rdc , and dc is the dimensionality of the codebook and N is
number of codebook vectors. The encoder maps K to latent representations Z which are quantized
before passing through the decoder. For quantization, each latent feature zi in Z is mapped to
the nearest codebook vector cj ∈ C using Ẑi = argmincj∈C ||Zi − cj ||2, resulting in quantized
latent features Ẑ = [Ẑ1, Ẑ2, . . . ]. The reconstructed motion K̂ is obtained by passing Ẑ through
the decoder, K̂ = fdec(Ẑ). The VQVAE training objective Lvq combines a reconstruction loss, a
temporal smoothing term, and a commitment loss:

Lvq = Lrec + λtempLtemp + λcommitLcommit,

Lrec = ||K − K̂||2, Ltemp =
T∑
t=2

||K̂t − K̂t−1||2, Lcommit = ||Z − sg[Ẑ]||2,
(1)

where sg is the stop-gradient operator. To prevent codebook collapse, the codebook is updated
using an exponential moving average (EMA) as follows: C iter ← λEMAC

iter-1 + (1− λEMA)C
new,

where λEMA is the EMA constant, and inactive codes are reassigned based on input data.

Guidance: Figure 2 provides a high level overview of our guidance framework. To constrain the
generated motion to exhibit desired properties, we draw inspiration from "Latent Inceptionism"
Eckmann et al. (2022). We use the property predictor, gα (details in Sec.3.2) to guide latent vectors
toward favorable motions. The weights of the decoder fdec of the model and property predictor gα
are frozen, and the optimization process focuses on finding optimal latent variables Z that generate
motions satisfying clinician-defined constraints. Latent vectors Z are initially sampled from a normal
distribution N(0, I), and optimized using the Adam optimizer to minimize a regression loss:

LLIMO = ||GT− gα(fdec(Z))||2, (2)

where GT represents the ground truth obtained from the reference dataset, and gα(fdec(z)) is
the predicted property. To ensure that the optimized Z remains close to the training distribution, we
introduce a proximity loss. This term minimizes the L2 distance between the optimized Z and the
nearest latent vector from the training data: Lproximity = ||Z − znearest||2, where znearest is the closest
latent vector from the training dataset. The total loss function combines these terms:

Ltotal = LLIMO + βLproximity (3)

where β is a tunable hyperparameter. This formulation ensures that the guidance policy generates
motions with the desired properties while maintaining proximity to the training data distribution.

3.2. Surrogate Model for Muscle Activation

Muscle activations reveal the relationships between muscle coordination, kinematics, and clinically
relevant metrics, enabling the discovery of optimal strategies that may be difficult for humans to
identify unaided. We leverage muscle-driven simulations (Falisse et al. (2019)) and data from
Uhlrich et al. (2022) to generate ground truth for training models and designing scoring functions.
To enable physiologically relevant feedback for motion generation, we propose a surrogate model
that efficiently estimates muscle activations from joint kinematics. This model eliminates the
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Figure 2: Score Calculation: Latent variables Z (sampled randomly) are decoded using the decoder to generate
joint kinematics output K. Next, hierarchical transformations are applied to the biomechanical model, to
compute joint centers J. Then a surrogate model predicts muscle activations Â. Finally, clinician-defined
constraints are imposed on the derived variables, generating a score S using the property predictor gα

computational burden of traditional simulations, making it feasible for VQVAE training while
ensuring anatomical plausibility and biomechanical consistency. Additionally, the surrogate model
bypasses the need for complex gradient approximations typically required for non-differentiable
physical simulations.

The surrogate model is a sequence-to-sequence mapping, fsur : RT×D → RT×M , where
K̂ ∈ RT×D represents the generated kinematics from our generative model, and y ∈ RT×M

corresponds to predicted muscle activations. A 3-layer transformer architecture with multi-head
attention captures both local and long-range temporal dependencies, ensuring accurate predictions.
Sigmoid activation functions on the output ensure the muscle activations are bounded within the
physiologically valid range of [0, 1]. To train the surrogate model, we minimize the L1 loss between
predicted and true muscle activations:

L =
1

TM

T∑
t=1

M∑
m=1

∣∣∣At,m − Ât,m

∣∣∣ ,
where At,m and Ât,m denote the simulation and predicted activations, respectively, for muscle m

at time step t. Further training details, including data preprocessing, optimization parameters, and
hyperparameter settings, are provided in the supplementary material.

3.3. Biomechanical Constraints and Guidance Policy

Our framework allows clinicians to impose multiple biomechanical constraints and criteria on the
generated motion, ensuring adherence to physiologically meaningful properties. These constraints
can target various aspects of the motion, including joint kinematics (pelvis tilt, angular velocity ω
), joint center dynamics (center of mass (COM) velocity and acceleration), and muscle activations.
For the purpose of this paper, we will be focusing on the ‘SQUAT’ motion. This framework can be
extended to other motions as well since other motions will also use constraints relating to certain
joint angles or muscle activations. To incorporate these criteria, we define a user-defined objective
function, gα : K → S, where S is a scalar score indicating how well the generated motion satisfies
the desired properties. The final objective is formulated as a weighted sum of individual criteria.

Joint Kinematics: Joint kinematics offer a direct means to enforce meaningful constraints on
properties like pelvic tilt, asymmetry and angular velocity (ω). Pelvic tilt encourages peak muscle
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activation by maximizing pelvic tilt at specific moments during the motion. Asymmetry minimizes
the difference in flexion angles of corresponding left and right joints (hip, knee, and ankle) at all time
steps to enforce symmetrical motion. ω reduces temporal jitter by applying a temporal smoothing
constraint that minimizes joint angular velocity and prevents the generation of unnatural motion.

Joint Centers: To ensure smooth and natural motion, we impose constraints on the dynamics
(velocity and acceleration) of COM of joint centers. This reduces jitter by minimizing velocity and
acceleration variations in the COM trajectory. Acceleration is computed using the Laplacian operator
applied to the COM trajectory.

Muscle Activation: To promote physiologically relevant muscle activations, we enforce range
constraints on the ‘Vastus Medialis’ muscles. This leads to deeper squats by restricting the activations
of the left and right vastus medialis muscles within a user-defined range.

By combining these criteria, our framework ensures that the generated motions adhere to the
specified biomechanical properties, enabling the generation of clinically meaningful and physiologi-
cally consistent motion sequences. The definitions and implementations for the above biomechanical
constraints are summarized in Table.1. The final property predictor can be defined as:

gθ = αtiltLtilt+αasymmLasymm+αωLω+αvCOMLvCOM +αaCOMLaCOM +αslideLslide+αMACLMAC (4)

Metric Definition Guidance Loss
Pelvis Tilt (degs) max(Kpelvis), where Kpelvis is the pelvis tilt angle at peak activation Ltilt =

1
T

∑T
t=1 K̂t,peak_timestep,pelvis_tilt_index

Asymmetry (degs) mean(
∑

(jl,jr)∈leg joints |Kj,left −Kj,right|), Lasymm = 1
T

∑T
t=1

∑
jl,jr∈leg joints(K̂left − K̂right)

2

comparing the angles of left and right leg joint
Angular vel. (degs/s) mean(

∑
θ∈Kangles

dθ
dt ) , where Kangle is joint angles in Kinematics Lω = 1

T

∑T
t=1

∑
θ∈Kangles(K̂t,θ − K̂t,θ)

2

COM vel. (m/s) mean( ||dK
trans||
dt ) , where Ktrans ∈ R3 LvCOM = 1

T−1

∑T−1
t=1 (K̂

trans
t+1 − K̂trans

t )2 is the
pelvis translation relative to the ground

COM acc. (m/s2) mean( ||d
2Ktrans||

dt2 ), where∇2 is the Laplacian operator LaCOM = 1
T−2

∑T−1
t=2 (∇2K̂trans)2

Foot Sliding mean(|| dplowest
dt ||), ensures the lowest point plowest Lslide =

1
T−1

∑T−1
t=1 (plowest,t+1 − plowest,t)

2

does not slide on the ground
Muscle activation Ensure vastus medialis muscle activation Âvas_med LMAC = 1

T

∑T
t=1max(x− high, low− x, 0)

constrain (MAC) remains in the given range [low,high]

Table 1: Summary of loss constraints and their implementations.

To compute joint centers from kinematics, we employ Werling et al. (2021) to perform hierarchi-
cal transformations. At each time step, hierarchical transformations deform the biomechanical model
to the desired pose using transformation matrices for the kinematic chain. For joint j, transformation
matrix Tj = RjTj−1 + tj , where Rj is the rotation matrix derived from joint angles, Tj−1 is the
parent joint’s transformation matrix, and tj is the translation vector for joint displacements. Joint
centers Jj for each joint j are extracted from Tj as Jj = Tj

[
0, 0, 0, 1

]T
4. Experiments Results

4.1. Data collection

We collect data from 80 subjects performing squats and use OpenCap (Uhlrich et al. (2022)) to
perform muscle driven simulations. We use the Lai et al. (2017) musculoskeletal which includes 80
muscles for lower-limb coordinates. Ground reaction forces are modeled through six foot-ground
contact spheres. The tracking simulation is formulated as optimal control problems that aim to
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identify muscle excitations that minimize a cost function subject to constraints describing muscle
and skeletal dynamics. The cost function includes terms for muscle activations, torque motors and
tracking terms for joint positions, velocities and accelerations. All the settings are kept for ’squat’
except tolerance 10−3. 60 subjects are used for training and 20 for validation.

4.2. Baselines

To evaluate the effectiveness of our guidance pipeline, we compare BIGE against traditional motion
generation methods as well as state-of-the-art human motion generation AI models:

• Reference: Data collected from muscle-driven simulation.

• Markerless Motion Capture (MoCap) OpenCap leverages pose estimation algorithms to
identify body landmarks from videos to estimate kinematics. These kinematics represent the
motion data obtained from a markerless motion capture system using predictive models as
opposed to generative models. Note that this data does not contain muscle activation.

• MDM Tevet et al. (2022): A classifier-free, diffusion-based generative model for the human
motion domain, conditioned on language inputs and implemented using transformers.

• T2M-GPT Zhang et al. (2023a): A language-guided generative framework that combines a
Vector Quantized-Variational AutoEncoder (VQ-VAE) with a Generative Pre-trained Trans-
former (GPT) to generate human motion from textual descriptions.

• VQ-VAE van den Oord et al. (2017): A VQ-VAE trained directly on the joint kinematics of a
biomechanical model.

For MDM and T2M-GPT, we generate high-quality squat motions by providing the models with
the textual prompt: "a person is doing squats with hands behind head". Since these models output
data in SMPL format, we apply inverse kinematics (IK) using Werling et al. (2021) to convert the
generated motions into joint kinematics format. For VQ-VAE, we directly sample latent vectors from
the encoder’s latent space to produce squat motions, which are inherently in joint kinematics format.

4.3. Evaluation Metrics

We employ a set of metrics designed to capture both realism and biomechanical accuracy. Realism
is assessed using fidelity and diversity metrics, which measure how closely the generated motions
align with real-world data while maintaining natural variability. Floor interaction metrics, including
penetration, floating, and sliding, evaluate the physical plausibility of the generated motions by
analyzing their interaction with the ground. These metrics are critical for ensuring that the motions
are not only visually realistic but also biomechanically consistent and suitable for clinical applications.

Fidelity: To evaluate the fidelity of the generated motion data, we compute the 2-Wasserstein
distance, between the real data distribution, P and the generated data distribution, Q. This metric
compares the aggregated distributions by considering their means, µreal = Ex ∼ P [x] and µgen =
Ex ∼ Q[x], as well as their variances σ2

real = Ex ∼ P [(x−µreal)
2] and σ2

gen = Ex ∼ Q[(x−µgen)
2]

. Specifically, the Wasserstein distance is calculated as:

[W 2
2 (P,Q) = (µreal − µgen)

2 + (σreal − σgen)
2] (5)
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Model Realism Floor metrics
Fidelity ↓ Diversity→ Penetration (cm) ↓ Floating (cm) ↓ Sliding ( m

sec ) ↓

Reference - 1.736 0.003±0.057 0.000±0.021 0.035±0.024

MoCap 7.855±9.902 1.773±0.015 0.501±0.987 0.759±1.649 0.209±0.161

MDM 257.95±105.92 1.26±0.05 2.685±3.840 3.216±4.636 1.395±2.672

T2M-GPT 459.49±257.30 1.45±0.05 1.997±2.938 2.440±3.606 3.770±4.758

VQVAE 45.99±4.67 1.82±0.03 2.035±3.016 2.331±3.506 1.351±0.830

BIGE 6.48±4.46 1.76±0.03 2.327±3.659 2.379±3.561 0.291±0.255

Table 2: Performance of different models based on realism, and floor metrics. The right arrow (→) indicates
that the values should be close to the Reference data. Down arrow (↓) means a value closer to 0 is better.

Model Pelvis tilt(degs)→ Asymmetry(degs)→ ω (degs/s)→ COM vel.(m/s)→ COM acc. (m/s2)→ Constrain (0-1)↓

Reference −23.40 2.42 90.04 0.54 2.65 0.08
MoCap −28.13±6.03 2.76±0.59 96.24±13.96 0.67±0.14 30.45±5.55 0.03±0.03

MDM 0.42±1.87 2.25±0.28 554.10±112.77 3.39±0.79 335.86±81.37 0.03±0.02

T2M-GPT 4.16±2.42 4.73±0.29 918.14±42.06 6.09±0.48 597.95±54.60 0.02±0.01

VQVAE −20.69±0.51 1.12±0.03 37.78±0.42 1.59±0.08 128.24±6.49 0.16±0.01

BIGE −23.09±1.54 2.09±0.14 56.95±1.94 0.51±0.04 27.32±3.88 0.06±0.01

Table 3: Performance evaluation on guidance metrics. The right arrow (→) indicates that the values should be
close to the Reference data. Down arrow (↓) means a value closer to 0 is better.

Diversity: To quantify the diversity of the generated motion data, we compute the Shannon entropy
H(X) = −

∑N
i=1 pi log pi of both the real and generated datasets, where N is the number of bins in

the histogram and pi is the probability associated with bin i. Entropy measures the uncertainty or
variability in the data distribution; higher entropy indicates greater diversity in the generated samples.
The diversity metric D is defined as the absolute difference between the entropies of the real and
generated datasets, ensuring that the generative model produces outputs with a comparable level of
variability as observed in the real dataset.

Floor metrics To evaluate the physical plausibility of generated motions, we also report floor based
metrics proposed in Yuan et al. (2023). The metrics are calculated using the joint centers. The ground
is estimated using the median of the minimum y-coordinate of all time steps for all samples.

• Penetration: Displacement below the ground at each time step for all subjects defined as:
Penetration(P ) = 1

T

∑T
t=1max(0,−(ymin,t + ytranslation)), where ymin,t is the minimum y-

coordinate of all joint centers at time step t, and ytranslation is the estimated ground height.

• Floating: Displacement above the ground at each time step for all subjects which is defined as:
Floating(F ) = 1

T

∑T
t=1max(0, ymin,t + ytranslation)

• Sliding: Measures the velocity of the lowest point in contact with the ground at consecutive
time steps, Sliding(S) = 1

T−1

∑T−1
t=1 ∥plow,t+1 − plow,t∥, where plow,t is the 3D position of

the lowest joint center at time step t.

4.4. Quantitative Results

We present a quantitative comparison of BIGE with other baseline models in Table 2 and Table 3.
Table 2 evaluates the models using the metrics specified in Section 4.3. BIGE achieves the lowest
fidelity error among all models, including MoCap data, and demonstrates diversity closest to the
reference data, indicating that its reconstructions closely approximate clinician-approved real motions.
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For the penetration and floating metrics, BIGE performs comparably to other baselines but shows
significant improvement in the ‘sliding’ metric. This highlights that the motions generated by BIGE
are more grounded, resulting in increased stability and naturalness compared to other models.

Table 3 compares the models based on the biomechanical constraints introduced in Section 3.3.
BIGE achieves the best results across most categories, demonstrating that it generates the most
biomechanically accurate motions. This indicates that BIGE effectively adheres to clinician-accepted
constraints, highlighting its efficacy in producing physiologically meaningful motion.

4.5. Qualitative Comparison

We provide a frame-by-frame comparison of BIGE, MDM and VQVAE over a single squat cycle in
Figure 3 and Figure 4 (limited to 5 frames for interpretability). The motions generated by MDM and
VQVAE fail to achieve sufficient depth in the squat and exhibit unnatural artifacts during the cycle.
In contrast, BIGE produces motions closely aligned with the reference data and free of such artifacts.
The biomechanical constraints enforced in BIGE enable the model to perform deep, natural squats
throughout the cycle. Comparisons with other baselines are provided in the supplementary material.

Figure 3: Qualitative Results: Comparison of generated samples from MDM and BIGE with the reference
data. The yellow curve represents the movement of the hip joint over the entire squat cycle. BIGE generates a
more natural squat motion compared to MDM. The red circle highlights the artifact observed in the pelvic tilt
for MDM-generated motion.

5. Discussion

In this work, we proposed a novel framework, BIGE, for generating physiologically meaningful
human motions tailored to clinician-defined objectives. By combining a VQ-VAE with a guidance
mechanism based on biomechanical constraints, our approach generates motions that satisfy both
observable kinematic properties and hidden criteria, such as muscle activations. This integration
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Figure 4: Ablation: Comparison between generated samples from VQVAE and our guidance strategy. The
samples are ordered by the peak muscle activation. The red and green lines at 50% squat cycle represent the
depth of the squat. Our guidance strategy leads to a more physiologically accurate squat motion as evidenced
by the increased depth of the squat as muscle activation increases.

ensures that the generated motions are not only anatomically plausible but also clinically relevant for
applications such as rehabilitation and exercise training.

Our results highlight the efficacy of BIGE in generating high-quality motions compared to
state-of-the-art models. Quantitative evaluations demonstrate that BIGE achieves the closest fidelity
and diversity to reference data while maintaining superior adherence to biomechanical constraints.
Specifically, BIGE significantly reduces sliding artifacts and achieves smoother, more grounded
motions than baseline models. Qualitative comparisons further show BIGE’s ability to produce deep
and natural squats free from artifacts, outperforming other generative models like MDM.

Despite its advantages, BIGE has some limitations that open avenues for future research. First,
the current framework relies on pre-defined scoring metrics and constraints, which may not generalize
well to diverse motions or varying clinical requirements. Future work could explore adaptive scoring
mechanisms that learn from clinician feedback or dynamically adjust constraints based on specific use
cases. Second, BIGE primarily focuses on generating motions within the joint kinematics framework.
Incorporating additional biomechanical factors, such as EMG data and external forces, could further
enhance the physiological validity of the generated motions. Exploring these aspects could also
expand the framework’s applicability to more complex motions and tasks.

6. Conclusion

Searching for optimal body motions based on individual variations in physical conditions can signifi-
cantly assist athletes and clinicians. Our work recommends specific joint angle modifications that
athletes can implement to improve their form. BIGE allows experts to accommodate these individual
features to provide the most optimal way to execute a motion, thereby notably improving athletic
performance. This work has significant implications for long-term outcomes such as ACL rehabilita-
tion and injury prevention. In this paper, we identified and addressed the bottlenecks associated with
using musculoskeletal models for human motion generation. Through a comprehensive exploration
of skeletal models, muscle dynamics, and optimization frameworks, our methodology promises to
unlock new frontiers in understanding and generating human motion.

10



BIGE : BIOMECHANICS-INFORMED GENAI FOR EXERCISE SCIENCE

References

Friedl De Groote, Allison Kinney, Anil Rao, and Benjamin Fregly. Evaluation of direct collocation
optimal control problem formulations for solving the muscle redundancy problem. Annals of
Biomedical Engineering, 44, 03 2016. doi: 10.1007/s10439-016-1591-9.

Scott L. Delp, Frank C. Anderson, Allison S. Arnold, Peter Loan, Ayman Habib, Chand T. John,
Eran Guendelman, and Darryl G. Thelen. Opensim: Open-source software to create and analyze
dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11):
1940–1950, 2007. doi: 10.1109/TBME.2007.901024.

Christopher L. Dembia, Nicholas A. Bianco, Antoine Falisse, Jennifer L. Hicks, and Scott L. Delp.
Opensim moco: Musculoskeletal optimal control. PLOS Computational Biology, 16(12):1–21, 12
2021. doi: 10.1371/journal.pcbi.1008493. URL https://doi.org/10.1371/journal.
pcbi.1008493.

Peter Eckmann, Kunyang Sun, Bo Zhao, Mudong Feng, Michael K Gilson, and Rose Yu. Limo:
Latent inceptionism for targeted molecule generation. 2022.

Antoine Falisse, Gil Serrancolí, Christopher L Dembia, Joris Gillis, and Friedl De Groote. Algorith-
mic differentiation improves the computational efficiency of opensim-based trajectory optimization
of human movement. PLoS One, 14(10):e0217730, 2019.

Chuan Guo, Xinxin Zuo, et al. Action2motion: Conditioned generation of 3d human motions.
ACMMM, 2020.

Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
diverse and natural 3d human motions from text. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5152–5161, 2022.

Debtanu Gupta, Shubh Maheshwari, Sai Shashank Kalakonda, Manasvi, and Ravi Kiran Sarvadev-
abhatla. Dsag: A scalable deep framework for action-conditioned multi-actor full body motion
synthesis. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), January 2023.

Archibald Vivian Hill. The heat of shortening and the dynamic constants of muscle. Proceedings
of the Royal Society of London. Series B - Biological Sciences, 126(843):136–195, 1938. doi:
10.1098/rspb.1938.0050. URL https://royalsocietypublishing.org/doi/abs/
10.1098/rspb.1938.0050.

Sai Shashank Kalakonda, Shubh Maheshwari, and Ravi Kiran Sarvadevabhatla. Action-gpt: Leverag-
ing large-scale language models for improved and generalized action generation. In arXiv preprint
https://arxiv.org/abs/2211.15603, 2022.

Marilyn Keller, Keenon Werling, Soyong Shin, Scott Delp, Sergi Pujades, C. Karen Liu, and
Michael J. Black. From skin to skeleton: Towards biomechanically accurate 3d digital humans. In
ACM ToG, Proc. SIGGRAPH Asia, volume 42, December 2023.

11

https://doi.org/10.1371/journal.pcbi.1008493
https://doi.org/10.1371/journal.pcbi.1008493
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1938.0050
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1938.0050


MAHESHWARI MOHANTY CAO RAZU MCCULLOCH YU

Adrian Lai, Allison Arnold, and James Wakeling. Why are antagonist muscles co-activated in my
simulation? a musculoskeletal model for analysing human locomotor tasks. Annals of Biomedical
Engineering, 45, 09 2017. doi: 10.1007/s10439-017-1920-7.

Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. Comprehensive biomechanical modeling
and simulation of the upper body. ACM Trans. Graph., 28(4), September 2009. ISSN 0730-
0301. doi: 10.1145/1559755.1559756. URL https://doi.org/10.1145/1559755.
1559756.

Matthew Loper, Naureen Mahmood, et al. Smpl: A skinned multi-person linear model. SIGGRAPH
Asia, 34(6):248:1–248:16, 2015.

Shubh Maheshwari, Debtanu Gupta, and Ravi Kiran Sarvadevabhatla. Mugl: Large scale multi
person conditional action generation with locomotion. In WACV, 2022.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into neural
networks. Google research blog, 20(14):5, 2015.

Mathis Petrovich, Michael J. Black, and Gül Varol. Action-conditioned 3D human motion synthesis
with transformer VAE. In ICCV, 2021.

Apoorva Rajagopal, Christopher L. Dembia, Matthew S. DeMers, Denny D. Delp, Jennifer L.
Hicks, and Scott L. Delp. Full-body musculoskeletal model for muscle-driven simulation of
human gait. IEEE Transactions on Biomedical Engineering, 63:2068–2079, 2016. URL https:
//api.semanticscholar.org/CorpusID:3798525.

Ajay Seth, Jennifer L. Hicks, Thomas K. Uchida, Ayman Habib, Christopher L. Dembia, James J.
Dunne, Carmichael F. Ong, Matthew S. DeMers, Apoorva Rajagopal, Matthew Millard, Samuel R.
Hamner, Edith M. Arnold, Jennifer R. Yong, Shrinidhi K. Lakshmikanth, Michael A. Sherman,
Joy P. Ku, and Scott L. Delp. Opensim: Simulating musculoskeletal dynamics and neuromuscular
control to study human and animal movement. PLOS Computational Biology, 14(7):1–20, 07
2018. doi: 10.1371/journal.pcbi.1006223. URL https://doi.org/10.1371/journal.
pcbi.1006223.

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
Human motion diffusion model. arXiv preprint arXiv:2209.14916, 2022.
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