Shortcuts

torchts package

Submodules

Base classes

class torchts.nn.model.TimeSeriesModel(optimizer, optimizer_args=None, criterion=<function mse_loss>, criterion_args=None, scheduler=None, scheduler_args=None, scaler=None)[source]

Bases: pytorch_lightning.core.lightning.LightningModule

Base class for all TorchTS models.

Parameters
  • optimizer (torch.optim.Optimizer) – Optimizer

  • opimizer_args (dict) – Arguments for the optimizer

  • criterion – Loss function

  • criterion_args (dict) – Arguments for the loss function

  • scheduler (torch.optim.lr_scheduler) – Learning rate scheduler

  • scheduler_args (dict) – Arguments for the scheduler

  • scaler (torchts.utils.scaler.Scaler) – Scaler

configure_optimizers()[source]

Configure optimizer.

Returns

torch.optim.Optimizer – Optimizer

fit(x, y, max_epochs=10, batch_size=128)[source]

Fits model to the given data.

Parameters
  • x (torch.Tensor) – Input data

  • y (torch.Tensor) – Output data

  • max_epochs (int) – Number of training epochs

  • batch_size (int) – Batch size for torch.utils.data.DataLoader

abstract forward(x, y=None, batches_seen=None)[source]

Forward pass.

Parameters

x (torch.Tensor) – Input data

Returns

torch.Tensor – Predicted data

predict(x)[source]

Runs model inference.

Parameters

x (torch.Tensor) – Input data

Returns

torch.Tensor – Predicted data

test_step(batch, batch_idx)[source]

Tests model for one step.

Parameters
  • batch (torch.Tensor) – Output of the torch.utils.data.DataLoader

  • batch_idx (int) – Integer displaying index of this batch

training_step(batch, batch_idx)[source]

Trains model for one step.

Parameters
  • batch (torch.Tensor) – Output of the torch.utils.data.DataLoader

  • batch_idx (int) – Integer displaying index of this batch

validation_step(batch, batch_idx)[source]

Validates model for one step.

Parameters
  • batch (torch.Tensor) – Output of the torch.utils.data.DataLoader

  • batch_idx (int) – Integer displaying index of this batch

Module contents